ml_grid.model_classes.tabpfn_classifier_class

Defines the TabPFN Classifier model class.

Attributes

TABPFN_AVAILABLE

Classes

TabPFNClassifierClass

Initializes the TabPFNClassifierClass.

Module Contents

ml_grid.model_classes.tabpfn_classifier_class.TABPFN_AVAILABLE = True[source]
class ml_grid.model_classes.tabpfn_classifier_class.TabPFNClassifierClass(parameter_space_size: str | None = None, model_version: str = 'v2.5_default', device: str = 'cpu', n_estimators: int = 4, subsample_samples: int | None = None, random_state: int = 42)[source]

Bases: sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin

Initializes the TabPFNClassifierClass.

Parameters:
  • parameter_space_size (Optional[str]) – Size of the parameter space for optimization. Defaults to None.

  • model_version (str) – The version of the TabPFN model to use.

  • device (str) – The device to run the model on (‘cpu’ or ‘cuda’).

  • n_estimators (int) – Number of ensemble members.

  • subsample_samples (Optional[int]) – Subsample size for large datasets.

  • random_state (int) – Random state for reproducibility.

Raises:

ImportError – If TabPFN is not installed.

model_version = 'v2.5_default'[source]
device = 'cpu'[source]
n_estimators = 4[source]
subsample_samples = None[source]
random_state = 42[source]
parameter_space_size = None[source]
algorithm_implementation[source]
method_name: str = 'TabPFNClassifier'[source]
parameter_vector_space: ml_grid.util.param_space.ParamSpace[source]
parameter_space: Dict[str, Any][source]
fit(X: pandas.DataFrame, y: pandas.Series)[source]

Fits the TabPFN model.

This method uses the hyperparameters set on the instance to create and fit the underlying TabPFNClassifier.

predict(X: pandas.DataFrame) pandas.Series[source]

Makes predictions using the fitted model.

predict_proba(X: pandas.DataFrame) pandas.DataFrame[source]

Returns probability estimates for predictions.