ml_grid.model_classes.tabpfn_classifier_class
Defines the TabPFN Classifier model class.
Attributes
Classes
Initializes the TabPFNClassifierClass. |
Module Contents
- class ml_grid.model_classes.tabpfn_classifier_class.TabPFNClassifierClass(parameter_space_size: str | None = None, model_version: str = 'v2.5_default', device: str = 'cpu', n_estimators: int = 4, subsample_samples: int | None = None, random_state: int = 42)[source]
Bases:
sklearn.base.BaseEstimator,sklearn.base.ClassifierMixinInitializes the TabPFNClassifierClass.
- Parameters:
parameter_space_size (Optional[str]) – Size of the parameter space for optimization. Defaults to None.
model_version (str) – The version of the TabPFN model to use.
device (str) – The device to run the model on (‘cpu’ or ‘cuda’).
n_estimators (int) – Number of ensemble members.
subsample_samples (Optional[int]) – Subsample size for large datasets.
random_state (int) – Random state for reproducibility.
- Raises:
ImportError – If TabPFN is not installed.
- parameter_vector_space: ml_grid.util.param_space.ParamSpace[source]
- fit(X: pandas.DataFrame, y: pandas.Series)[source]
Fits the TabPFN model.
This method uses the hyperparameters set on the instance to create and fit the underlying TabPFNClassifier.
- predict(X: pandas.DataFrame) pandas.Series[source]
Makes predictions using the fitted model.
- predict_proba(X: pandas.DataFrame) pandas.DataFrame[source]
Returns probability estimates for predictions.