plot_timeline
Timeline analysis plotting module for ML results analysis. Focuses on temporal trends and run-to-run comparisons with outcome stratification.
Attributes
Classes
Initializes the timeline analysis plotter. |
Module Contents
- class plot_timeline.TimelineAnalysisPlotter(data: pandas.DataFrame)[source]
Initializes the timeline analysis plotter.
- Parameters:
data (pd.DataFrame) – Results DataFrame, which must contain a ‘run_timestamp’ column.
- Raises:
ValueError – If the ‘run_timestamp’ column is not found in the data.
- plot_performance_timeline(metric: str = 'auc', algorithms_to_plot: List[str] | None = None, stratify_by_outcome: bool = False, outcomes_to_plot: List[str] | None = None, aggregation: str = 'mean', figsize: Tuple[int, int] = (14, 6)) None [source]
Plots performance metrics over time (across runs).
- Parameters:
metric (str, optional) – The performance metric to plot. Defaults to ‘auc’.
algorithms_to_plot (Optional[List[str]], optional) – A list of specific algorithms to include. Defaults to None.
stratify_by_outcome (bool, optional) – If True, creates separate plots for each outcome. Defaults to False.
outcomes_to_plot (Optional[List[str]], optional) – A list of specific outcomes to plot. Defaults to None.
aggregation (str, optional) – How to aggregate within runs (‘mean’, ‘best’, ‘median’). Defaults to ‘mean’.
figsize (Tuple[int, int], optional) – The figure size. Defaults to (14, 6).
- plot_improvement_trends(metric: str = 'auc', algorithms_to_plot: List[str] | None = None, stratify_by_outcome: bool = False, outcomes_to_plot: List[str] | None = None, figsize: Tuple[int, int] = (14, 7)) None [source]
Plots the optimization progress within each run.
This helps visualize how quickly the optimization finds better models within each batch/run.
- Parameters:
metric (str, optional) – The performance metric to analyze. Defaults to ‘auc’.
algorithms_to_plot (Optional[List[str]], optional) – A list of specific algorithms to include. If None, all are used. Defaults to None.
stratify_by_outcome (bool, optional) – If True, creates separate plots for each outcome. Defaults to False.
outcomes_to_plot (Optional[List[str]], optional) – A list of specific outcomes to plot if stratified. Defaults to None.
figsize (Tuple[int, int], optional) – The figure size. Defaults to (14, 7).
- plot_computational_cost_timeline(algorithms_to_plot: List[str] | None = None, stratify_by_outcome: bool = False, outcomes_to_plot: List[str] | None = None, aggregation: str = 'mean', figsize: Tuple[int, int] = (14, 6)) None [source]
Plots the computational cost (run_time) over time (across runs).
- Parameters:
algorithms_to_plot (Optional[List[str]], optional) – A list of specific algorithms to include. Defaults to None.
stratify_by_outcome (bool, optional) – If True, creates separate plots for each outcome. Defaults to False.
outcomes_to_plot (Optional[List[str]], optional) – A list of specific outcomes to plot if stratified. Defaults to None.
aggregation (str, optional) – How to aggregate within runs (‘mean’, ‘sum’, ‘median’). Defaults to ‘mean’.
figsize (Tuple[int, int], optional) – The figure size for the plot. Defaults to (14, 6).