plot_global_importance
Global importance analysis plotting module for ML results analysis. This module trains a meta-model on the experimental parameters to determine which settings have the most significant impact on the target metric.
Classes
Initialize the plotter. |
Module Contents
- class plot_global_importance.GlobalImportancePlotter(data: pandas.DataFrame)[source]
Initialize the plotter.
- Parameters:
data – Results DataFrame, must contain columns for experimental parameters and performance metrics.
- feature_categories = ['age', 'sex', 'bmi', 'ethnicity', 'bloods', 'diagnostic_order', 'drug_order', 'annotation_n',...[source]
- pipeline_continuous_params = ['nb_size', 'X_train_size', 'X_test_orig_size', 'X_test_size', 'n_fits', 't_fits', 'run_time'][source]
- plot_global_importance(metric: str = 'auc', top_n: int = 30, figsize: Tuple[int, int] = (12, 10)) None [source]
Trains a model to predict a metric from experimental parameters and plots importances.
This method trains a RandomForestRegressor on the various pipeline and algorithm parameters to predict the outcome of a given performance metric. parameters and plots the resulting feature importances.