ml_grid.model_classes.svc_class

Classes

SVCClass

Initializes the SVCClass.

Module Contents

class ml_grid.model_classes.svc_class.SVCClass(X: pandas.DataFrame | None = None, y: pandas.Series | None = None, parameter_space_size: str | None = None)[source]

Initializes the SVCClass.

This class requires scaled data. If the input data X is not detected as scaled, it will be automatically scaled using StandardScaler.

Parameters:
  • X (Optional[pd.DataFrame]) – Feature matrix for training. Defaults to None.

  • y (Optional[pd.Series]) – Target vector for training. Defaults to None.

  • parameter_space_size (Optional[str]) – Size of the parameter space for optimization. Defaults to None.

Raises:
X: pandas.DataFrame | None = None[source]
y: pandas.Series | None = None[source]
scaler: sklearn.preprocessing.StandardScaler | None = None[source]
algorithm_implementation: sklearn.svm.SVC[source]
method_name: str = 'SVC'[source]
parameter_vector_space: ml_grid.util.param_space.ParamSpace[source]
parameter_space: List[Dict[str, Any]][source]
is_data_scaled() bool[source]

Checks if the feature matrix X is scaled.

This method determines if the data appears to be scaled by checking if all feature values fall within the [0, 1] or [-1, 1] range.

Returns:

True if data appears to be scaled, False otherwise.

Return type:

bool

scale_data() None[source]

Scales the feature matrix X using MinMaxScaler.