ml_grid.model_classes.logistic_regression_class
Logistic Regression Classifier.
This module contains the LogisticRegression_class, which is a configuration class for the LogisticRegression. It provides parameter spaces for grid search and Bayesian optimization.
Classes
Initializes the LogisticRegressionClass. |
Module Contents
- class ml_grid.model_classes.logistic_regression_class.LogisticRegressionClass(X: pandas.DataFrame | None = None, y: pandas.Series | None = None, parameter_space_size: str | None = None)[source]
Initializes the LogisticRegressionClass.
- Parameters:
X (Optional[pd.DataFrame]) – Feature matrix for training. Defaults to None.
y (Optional[pd.Series]) – Target vector for training. Defaults to None.
parameter_space_size (Optional[str]) – Size of the parameter space for optimization. Defaults to None.
- Raises:
ValueError – If parameter_space_size is not a valid key (though current implementation does not explicitly raise this).
- X: pandas.DataFrame | None = None[source]
- y: pandas.Series | None = None[source]
- algorithm_implementation: sklearn.linear_model.LogisticRegression[source]
- parameter_vector_space: ml_grid.util.param_space.ParamSpace[source]