ml_grid.model_classes.lightgbm_class
Classes
Initializes the LightGBMClassifier wrapper. |
Module Contents
- class ml_grid.model_classes.lightgbm_class.LightGBMClassifier(boosting_type: str = 'gbdt', num_leaves: int = 31, learning_rate: float = 0.05, n_estimators: int = 100, objective: str = 'multiclass', num_class: int = 1, metric: str = 'multi_logloss', feature_fraction: float = 0.9, early_stopping_rounds: int | None = None, verbosity: int = -1)[source]
Bases:
sklearn.base.BaseEstimator
,sklearn.base.ClassifierMixin
Initializes the LightGBMClassifier wrapper.
- Parameters:
boosting_type (str) – The type of boosting to use.
num_leaves (int) – Maximum number of leaves in one tree.
learning_rate (float) – Boosting learning rate.
n_estimators (int) – Number of boosting rounds.
objective (str) – The learning objective.
num_class (int) – The number of classes for multiclass classification.
metric (str) – The metric to be used for evaluation.
feature_fraction (float) – Fraction of features to be considered for each tree.
early_stopping_rounds (Optional[int]) – Activates early stopping. Defaults to None.
verbosity (int) – Controls the level of LightGBM’s verbosity.
- classes_: numpy.ndarray | None = None[source]
- fit(X: pandas.DataFrame, y: pandas.Series | numpy.ndarray) LightGBMClassifier [source]
Fits the LightGBM model.
This method sanitizes the feature names in X before fitting the underlying lgb.LGBMClassifier.
- Parameters:
X (pd.DataFrame) – The training input samples.
y (Union[pd.Series, np.ndarray]) – The target values.
- Returns:
The fitted estimator.
- Return type:
- predict(X: pandas.DataFrame) numpy.ndarray [source]
Predicts class labels for samples in X.
This method sanitizes the feature names in X to match those used during training.
- Parameters:
X (pd.DataFrame) – The input samples to predict.
- Raises:
ValueError – If the model has not been fitted yet.
- Returns:
The predicted class labels.
- Return type:
np.ndarray
- score(X: pandas.DataFrame, y: pandas.Series | numpy.ndarray) float [source]
Returns the mean accuracy on the given test data and labels.
- Parameters:
X (pd.DataFrame) – Test samples.
y (Union[pd.Series, np.ndarray]) – True labels for X.
- Raises:
ValueError – If the model has not been fitted yet.
- Returns:
Mean accuracy of self.predict(X) wrt. y.
- Return type: