ml_grid.model_classes.H2OBaseClassifier
Attributes
Classes
Initializes the H2OBaseClassifier. |
Module Contents
- class ml_grid.model_classes.H2OBaseClassifier.H2OBaseClassifier(estimator_class=None, **kwargs)[source]
Bases:
sklearn.base.BaseEstimator,sklearn.base.ClassifierMixinInitializes the H2OBaseClassifier.
- Parameters:
estimator_class (Optional[type]) – The H2O estimator class to be wrapped (e.g., H2OGradientBoostingEstimator).
**kwargs – Additional keyword arguments to be passed to the H2O estimator during initialization.
- classes_: numpy.ndarray | None = None[source]
- fit(X: pandas.DataFrame, y: pandas.Series, **kwargs) H2OBaseClassifier[source]
Fits the H2O model.
- Parameters:
X (pd.DataFrame) – The feature matrix.
y (pd.Series) – The target vector.
**kwargs – Additional keyword arguments (not used).
- Returns:
The fitted classifier instance.
- Return type:
- predict(X: pandas.DataFrame) numpy.ndarray[source]
Predicts class labels for samples in X.
- Parameters:
X (pd.DataFrame) – The feature matrix for prediction.
- Returns:
An array of predicted class labels.
- Return type:
np.ndarray
- Raises:
RuntimeError – If the model is not fitted or if prediction fails.
- predict_proba(X: pandas.DataFrame) numpy.ndarray[source]
Predicts class probabilities for samples in X.
- Parameters:
X (pd.DataFrame) – The feature matrix for prediction.
- Returns:
An array of shape (n_samples, n_classes) with class probabilities.
- Return type:
np.ndarray
- Raises:
RuntimeError – If the model is not fitted or if prediction fails.
- set_params(**kwargs: Any) H2OBaseClassifier[source]
Sets the parameters of this estimator, compatible with scikit-learn.
- Parameters:
**kwargs – Keyword arguments representing the parameters to set.
- Returns:
The classifier instance with updated parameters.
- Return type: