ml_grid.model_classes.H2OBaseClassifier ======================================= .. py:module:: ml_grid.model_classes.H2OBaseClassifier Attributes ---------- .. autoapisummary:: ml_grid.model_classes.H2OBaseClassifier.logger Classes ------- .. autoapisummary:: ml_grid.model_classes.H2OBaseClassifier.H2OBaseClassifier Module Contents --------------- .. py:data:: logger .. py:class:: H2OBaseClassifier(estimator_class=None, **kwargs) Bases: :py:obj:`sklearn.base.BaseEstimator`, :py:obj:`sklearn.base.ClassifierMixin` Initializes the H2OBaseClassifier. :param estimator_class: The H2O estimator class to be wrapped (e.g., `H2OGradientBoostingEstimator`). :type estimator_class: Optional[type] :param \*\*kwargs: Additional keyword arguments to be passed to the H2O estimator during initialization. .. py:attribute:: MIN_SAMPLES_FOR_STABLE_FIT :value: 10 .. py:attribute:: estimator_class .. py:attribute:: logger .. py:attribute:: model_ :type: Optional[Any] :value: None .. py:attribute:: classes_ :type: Optional[numpy.ndarray] :value: None .. py:attribute:: feature_names_ :type: Optional[list] :value: None .. py:attribute:: feature_types_ :type: Optional[Dict[str, str]] :value: None .. py:method:: fit(X: pandas.DataFrame, y: pandas.Series, **kwargs) -> H2OBaseClassifier Fits the H2O model. :param X: The feature matrix. :type X: pd.DataFrame :param y: The target vector. :type y: pd.Series :param \*\*kwargs: Additional keyword arguments (not used). :returns: The fitted classifier instance. :rtype: H2OBaseClassifier .. py:method:: predict(X: pandas.DataFrame) -> numpy.ndarray Predicts class labels for samples in X. :param X: The feature matrix for prediction. :type X: pd.DataFrame :returns: An array of predicted class labels. :rtype: np.ndarray :raises RuntimeError: If the model is not fitted or if prediction fails. .. py:method:: predict_proba(X: pandas.DataFrame) -> numpy.ndarray Predicts class probabilities for samples in X. :param X: The feature matrix for prediction. :type X: pd.DataFrame :returns: An array of shape (n_samples, n_classes) with class probabilities. :rtype: np.ndarray :raises RuntimeError: If the model is not fitted or if prediction fails. .. py:method:: set_params(**kwargs: Any) -> H2OBaseClassifier Sets the parameters of this estimator, compatible with scikit-learn. :param \*\*kwargs: Keyword arguments representing the parameters to set. :returns: The classifier instance with updated parameters. :rtype: H2OBaseClassifier