ml_grid.pipeline.grid_search_cross_validate

Classes

grid_search_crossvalidate

Initializes and runs a cross-validated hyperparameter search.

Functions

dummy_auc(→ float)

Returns a constant AUC score of 0.5.

scale_data(→ pandas.DataFrame)

Scales the data to a [0, 1] range if it's not already scaled.

Module Contents

class ml_grid.pipeline.grid_search_cross_validate.grid_search_crossvalidate(algorithm_implementation: Any, parameter_space: Dict | List[Dict], method_name: str, ml_grid_object: Any, sub_sample_parameter_val: int = 100)[source]

Initializes and runs a cross-validated hyperparameter search.

This class takes a given algorithm, its parameter space, and data from the main pipeline object to perform either a grid search, randomized search, or Bayesian search for the best hyperparameters. It then logs the results.

Parameters:
  • algorithm_implementation (Any) – The scikit-learn compatible estimator instance.

  • parameter_space (Union[Dict, List[Dict]]) – The dictionary or list of dictionaries defining the hyperparameter search space.

  • method_name (str) – The name of the algorithm method.

  • ml_grid_object (Any) – The main pipeline object containing all data (X_train, y_train, etc.) and parameters for the current iteration.

  • sub_sample_parameter_val (int, optional) – A value used to limit the number of iterations in a randomized search. Defaults to 100.

global_params[source]
verbose = 0[source]
sub_sample_param_space_pct = 0.0005[source]
sub_sample_parameter_val = 100[source]
metric_list[source]
error_raise = False[source]
global_parameters[source]
ml_grid_object_iter[source]
X_train[source]
y_train[source]
X_test[source]
y_test[source]
X_test_orig[source]
y_test_orig[source]
cv[source]
grid_search_cross_validate_score_result[source]
ml_grid.pipeline.grid_search_cross_validate.dummy_auc() float[source]

Returns a constant AUC score of 0.5.

This function is intended as a placeholder or for use in scenarios where a valid AUC score cannot be calculated but a value is required.

Returns:

A constant value of 0.5.

Return type:

float

ml_grid.pipeline.grid_search_cross_validate.scale_data(X_train: pandas.DataFrame) pandas.DataFrame[source]

Scales the data to a [0, 1] range if it’s not already scaled.

Parameters:

X_train (pd.DataFrame) – Training features.

Returns:

Scaled training features.

Return type:

pd.DataFrame