ml_grid.pipeline.data_plot_split
Functions
|
Plots a pie chart showing the relative sizes of datasets. |
|
Creates a horizontal bar chart representing boolean values in a dictionary. |
|
Creates a horizontal bar chart from a dictionary of data. |
Plots a bar chart for candidate feature category counts. |
Module Contents
- ml_grid.pipeline.data_plot_split.plot_pie_chart_with_counts(X_train: Sized, X_test: Sized, X_test_orig: Sized) None [source]
Plots a pie chart showing the relative sizes of datasets.
- Parameters:
X_train (Sized) – The training dataset.
X_test (Sized) – The test dataset.
X_test_orig (Sized) – The original, unsplit test dataset.
- ml_grid.pipeline.data_plot_split.plot_dict_values(data_dict: Dict[str, bool]) None [source]
Creates a horizontal bar chart representing boolean values in a dictionary.
- ml_grid.pipeline.data_plot_split.create_bar_chart(data_dict: Dict[str, int | float], title: str = '', x_label: str = '', y_label: str = '') None [source]
Creates a horizontal bar chart from a dictionary of data.
- Parameters:
data_dict (Dict[str, Union[int, float]]) – Dictionary with category names as keys and their corresponding values.
title (str, optional) – The title of the chart. Defaults to “”.
x_label (str, optional) – The label for the x-axis. Defaults to “”.
y_label (str, optional) – The label for the y-axis. Defaults to “”.