ml_grid.pipeline.data_plot_split

Functions

plot_pie_chart_with_counts(→ None)

Plots a pie chart showing the relative sizes of datasets.

plot_dict_values(→ None)

Creates a horizontal bar chart representing boolean values in a dictionary.

create_bar_chart(→ None)

Creates a horizontal bar chart from a dictionary of data.

plot_candidate_feature_category_lists(→ None)

Plots a bar chart for candidate feature category counts.

Module Contents

ml_grid.pipeline.data_plot_split.plot_pie_chart_with_counts(X_train: Sized, X_test: Sized, X_test_orig: Sized) None[source]

Plots a pie chart showing the relative sizes of datasets.

Parameters:
  • X_train (Sized) – The training dataset.

  • X_test (Sized) – The test dataset.

  • X_test_orig (Sized) – The original, unsplit test dataset.

ml_grid.pipeline.data_plot_split.plot_dict_values(data_dict: Dict[str, bool]) None[source]

Creates a horizontal bar chart representing boolean values in a dictionary.

Parameters:

data_dict (Dict[str, bool]) – A dictionary with string keys and boolean values.

ml_grid.pipeline.data_plot_split.create_bar_chart(data_dict: Dict[str, int | float], title: str = '', x_label: str = '', y_label: str = '') None[source]

Creates a horizontal bar chart from a dictionary of data.

Parameters:
  • data_dict (Dict[str, Union[int, float]]) – Dictionary with category names as keys and their corresponding values.

  • title (str, optional) – The title of the chart. Defaults to “”.

  • x_label (str, optional) – The label for the x-axis. Defaults to “”.

  • y_label (str, optional) – The label for the y-axis. Defaults to “”.

ml_grid.pipeline.data_plot_split.plot_candidate_feature_category_lists(data: Dict[str, int]) None[source]

Plots a bar chart for candidate feature category counts.

Parameters:

data (Dict[str, int]) – A dictionary where keys are feature category names and values are the counts of features in that category.