ml_grid.model_classes.keras_classifier_class
Classes
Initializes the KerasClassifierClass. |
Functions
|
Builds and compiles a Keras Sequential model. |
Module Contents
- ml_grid.model_classes.keras_classifier_class.create_model(layers: int = 1, l1_reg: float = 0.0, l2_reg: float = 0.0, width: int = 15, learning_rate: float = 0.01, dropout_val: float = 0.2, input_dim_val: int = 0) keras.models.Sequential[source]
Builds and compiles a Keras Sequential model.
- Parameters:
layers (int) – The number of dense layers in the model.
l1_reg (float) – L1 regularization factor.
l2_reg (float) – L2 regularization factor.
width (int) – The number of units in each dense layer.
learning_rate (float) – The learning rate for the Adam optimizer.
dropout_val (float) – The dropout rate.
input_dim_val (int) – The input dimension for the first layer.
- Returns:
The compiled Keras model.
- Return type:
Sequential
- class ml_grid.model_classes.keras_classifier_class.KerasClassifierClass(X: pandas.DataFrame, y: pandas.Series, parameter_space_size: str | None = None)[source]
Initializes the KerasClassifierClass.
This configures a Keras Sequential model for binary classification, wrapped in a KerasClassifier to be compatible with scikit-learn’s hyperparameter tuning utilities.
- Parameters:
X (pd.DataFrame) – Feature matrix for training.
y (pd.Series) – Target vector for training.
parameter_space_size (Optional[str]) – Size of the parameter space for optimization. Defaults to None.
- Raises:
ValueError – If parameter_space_size is not a valid key (though current implementation does not explicitly raise this).