summarize_results ================= .. py:module:: summarize_results .. autoapi-nested-parse:: Module for creating tabular summaries from ML results data. Classes ------- .. autoapisummary:: summarize_results.ResultsSummarizer Module Contents --------------- .. py:class:: ResultsSummarizer(data: pandas.DataFrame) Initializes the summarizer. :param data: Aggregated results DataFrame. :type data: pd.DataFrame :raises ValueError: If the input data is not a non-empty pandas DataFrame. .. py:attribute:: data .. py:attribute:: clean_data .. py:method:: get_best_model_per_outcome(metric: str = 'auc') -> pandas.DataFrame Finds the best model for each outcome and expands the feature list. This method identifies the single best-performing model run for each outcome variable based on the specified metric. It then transforms the 'decoded_features' list into a set of boolean columns, where each new column represents a feature and its value indicates whether that feature was used in the best model run. :param metric: The performance metric to use for determining the "best" model. Defaults to 'auc'. :type metric: str, optional :returns: A DataFrame containing the best model run for each outcome, with additional boolean columns for each feature. :rtype: pd.DataFrame