plot_master =========== .. py:module:: plot_master .. autoapi-nested-parse:: Master plotting module that provides a single entry point to generate a comprehensive set of visualizations for ML results analysis. Classes ------- .. autoapisummary:: plot_master.MasterPlotter Module Contents --------------- .. py:class:: MasterPlotter(data: pandas.DataFrame, output_dir: str = '.') Initializes the MasterPlotter with aggregated results data. This class acts as a facade, instantiating various specialized plotters to generate a comprehensive suite of analysis visualizations from the provided results DataFrame. :param data: A DataFrame containing the aggregated ML experiment results. Must be non-empty. :type data: pd.DataFrame :param output_dir: The directory where output files (like CSVs) will be saved. Defaults to '.'. :type output_dir: str, optional :raises ValueError: If the input `data` is not a valid, non-empty pandas DataFrame. .. py:attribute:: data .. py:attribute:: output_dir :value: '.' .. py:attribute:: algo_plotter .. py:attribute:: dist_plotter .. py:attribute:: timeline_plotter .. py:attribute:: interaction_plotter .. py:method:: plot_all(metric: str = 'auc_m', stratify_by_outcome: bool = True, top_n_features: int = 20, top_n_algorithms: int = 10, save_best_results: bool = True) -> None Generates a comprehensive set of standard plots from all plotters. This method calls the main plotting functions from each specialized plotter to provide a full overview of the results, including algorithm comparisons, metric distributions, timeline trends, and feature importance. It also handles saving a summary of the best models. :param metric: The primary performance metric to use for plotting (e.g., 'auc', 'f1'). Defaults to 'auc_m'. :type metric: str, optional :param stratify_by_outcome: If True, creates plots stratified by the 'outcome_variable' column. Defaults to True. :type stratify_by_outcome: bool, optional :param top_n_features: The number of top features to show in feature-related plots. Defaults to 20. :type top_n_features: int, optional :param top_n_algorithms: The number of top algorithms to show in ranking plots. Defaults to 10. :type top_n_algorithms: int, optional :param save_best_results: If True, saves a CSV summary of the best model per outcome. Defaults to True. :type save_best_results: bool, optional