ml_grid.util.validate_parameters ================================ .. py:module:: ml_grid.util.validate_parameters .. autoapi-nested-parse:: Functions to validate model-specific hyperparameters before grid search. Functions --------- .. autoapisummary:: ml_grid.util.validate_parameters.validate_knn_parameters ml_grid.util.validate_parameters.validate_XGB_parameters ml_grid.util.validate_parameters.validate_parameters_helper Module Contents --------------- .. py:function:: validate_knn_parameters(parameters: Dict[str, Any], ml_grid_object: Any) -> Dict[str, Any] Validates the `n_neighbors` parameter for KNN classifiers. This function ensures that the values for `n_neighbors` do not exceed the number of samples in the training data. If a value is too large, it is capped at `n_samples - 1`. :param parameters: The dictionary of parameters to validate. :type parameters: Dict[str, Any] :param ml_grid_object: The main pipeline object containing the training data (`X_train`). :type ml_grid_object: Any :returns: The validated parameters dictionary. :rtype: Dict[str, Any] .. py:function:: validate_XGB_parameters(parameters: Dict[str, Any], ml_grid_object: Any) -> Dict[str, Any] Validates the `max_bin` parameter for XGBoost. This function checks that the max_bin values are greater than or equal to 2, and if not, it sets them to 2. :param parameters: The dictionary of parameters to validate. :type parameters: Dict[str, Any] :param ml_grid_object: The main pipeline object (currently unused). :type ml_grid_object: Any :returns: The validated parameters dictionary. :rtype: Dict[str, Any] .. py:function:: validate_parameters_helper(algorithm_implementation: Any, parameters: Dict[str, Any], ml_grid_object: Any) -> Dict[str, Any] Dispatches to the correct parameter validation function based on algorithm type. :param algorithm_implementation: The scikit-learn estimator instance. :type algorithm_implementation: Any :param parameters: The dictionary of parameters to validate. :type parameters: Dict[str, Any] :param ml_grid_object: The main pipeline object containing training data. :type ml_grid_object: Any :returns: The validated parameters dictionary. :rtype: Dict[str, Any]