ml_grid.model_classes.catboostClassifier ======================================== .. py:module:: ml_grid.model_classes.catboostClassifier Classes ------- .. autoapisummary:: ml_grid.model_classes.catboostClassifier.CatBoostSKLearnWrapper Module Contents --------------- .. py:class:: CatBoostSKLearnWrapper(**kwargs: Any) Bases: :py:obj:`sklearn.base.BaseEstimator`, :py:obj:`sklearn.base.ClassifierMixin` Initializes the CatBoostSKLearnWrapper. :param \*\*kwargs: Keyword arguments passed directly to the `catboost.CatBoostClassifier`. :type \*\*kwargs: Any .. py:attribute:: model .. py:method:: fit(X: Union[pandas.DataFrame, numpy.ndarray], y: Union[pandas.Series, numpy.ndarray]) -> CatBoostSKLearnWrapper Fits the CatBoost model. :param X: The training input samples. :type X: Union[pd.DataFrame, np.ndarray] :param y: The target values. :type y: Union[pd.Series, np.ndarray] :returns: The fitted estimator. :rtype: CatBoostSKLearnWrapper .. py:method:: predict(X: Union[pandas.DataFrame, numpy.ndarray]) -> numpy.ndarray Predicts class labels for samples in X. :param X: The input samples to predict. :type X: Union[pd.DataFrame, np.ndarray] :returns: The predicted class labels. :rtype: np.ndarray .. py:method:: predict_proba(X: Union[pandas.DataFrame, numpy.ndarray]) -> numpy.ndarray Predicts class probabilities for samples in X. :param X: The input samples. :type X: Union[pd.DataFrame, np.ndarray] :returns: The class probabilities of the input samples. :rtype: np.ndarray