ml_grid.model_classes.H2OGLMClassifier ====================================== .. py:module:: ml_grid.model_classes.H2OGLMClassifier Classes ------- .. autoapisummary:: ml_grid.model_classes.H2OGLMClassifier.H2OGLMClassifier Module Contents --------------- .. py:class:: H2OGLMClassifier(**kwargs) Bases: :py:obj:`ml_grid.model_classes.H2OBaseClassifier.H2OBaseClassifier` Initializes the H2OGLMClassifier, handling the 'lambda' parameter. This wrapper ensures compatibility with scikit-learn's parameter naming by accepting `lambda_` and internally mapping it for the H2O backend. :param \*\*kwargs: Keyword arguments passed directly to the `H2OGeneralizedLinearEstimator`. Common arguments include `family='binomial'`, `alpha=0.5`, and `lambda_` (for regularization). .. py:method:: fit(X: pandas.DataFrame, y: pandas.Series, **kwargs) -> H2OGLMClassifier Fits the H2O GLM model and corrects the 'lambda_' parameter name. This method first calls the parent `fit` method to train the model. After fitting, it ensures the internal H2O model object has the regularization parameter named 'lambda' (not 'lambda_') to prevent errors during prediction. :returns: The fitted classifier instance. :rtype: H2OGLMClassifier