Source code for ml_grid.model_classes.H2OXGBoostClassifier

"""H2O XGBoost Classifier Wrapper.

This module provides a scikit-learn compatible wrapper for H2O's XGBoostEstimator.
"""

from h2o.estimators import H2OXGBoostEstimator

from .H2OBaseClassifier import H2OBaseClassifier


[docs] class H2OXGBoostClassifier(H2OBaseClassifier): """A scikit-learn compatible wrapper for H2O's XGBoost.""" def __init__(self, **kwargs): """Initializes the H2OXGBoostClassifier. All keyword arguments are passed directly to the H2OXGBoostEstimator. Example args: ntrees=50, max_depth=5 """ # Remove estimator_class from kwargs if present (happens during sklearn clone) kwargs.pop("estimator_class", None) # Pass the specific estimator class super().__init__(estimator_class=H2OXGBoostEstimator, **kwargs)