Source code for ml_grid.model_classes.H2ODRFClassifier

from h2o.estimators import H2ORandomForestEstimator

from .H2OBaseClassifier import H2OBaseClassifier


[docs] class H2ODRFClassifier(H2OBaseClassifier): """A scikit-learn compatible wrapper for H2O's Distributed Random Forest. This class allows H2O's DRF to be used as a standard scikit-learn classifier, making it compatible with tools like GridSearchCV and BayesSearchCV. """ def __init__(self, **kwargs): """Initializes the H2ODRFClassifier. All keyword arguments are passed directly to the H2ORandomForestEstimator. Example args: ntrees=50, max_depth=20, seed=1 """ # Remove estimator_class from kwargs if present (happens during sklearn clone) kwargs.pop("estimator_class", None) # Pass the specific estimator class super().__init__(estimator_class=H2ORandomForestEstimator, **kwargs)