Source code for TemporalDictionaryEnsembleClassifier_module

from typing import Any, Dict, List

from aeon.classification.dictionary_based._tde import TemporalDictionaryEnsemble

from ml_grid.pipeline.data import pipe
from ml_grid.util.global_params import global_parameters


[docs] class TemporalDictionaryEnsemble_class: """A wrapper for the aeon TemporalDictionaryEnsemble time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the TemporalDictionaryEnsemble_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ verbose_param = ml_grid_object.verbose random_state_val = ml_grid_object.global_params.random_state_val time_limit_param = global_parameters.time_limit_param n_jobs_model_val = ml_grid_object.global_params.n_jobs_model_val
[docs] self.algorithm_implementation: TemporalDictionaryEnsemble = ( TemporalDictionaryEnsemble() )
[docs] self.method_name: str = "TemporalDictionaryEnsemble"
[docs] self.parameter_space: Dict[str, List[Any]] = { "n_parameter_samples": [100, 250, 500], "max_ensemble_size": [25, 50, 100], "max_win_len_prop": [0.5, 1.0], "min_window": [5, 10, 15], "randomly_selected_params": [25, 50, 75], "bigrams": [True, False, None], "dim_threshold": [0.7, 0.85, 0.95], "max_dims": [10, 20, 30], "time_limit_in_minutes": time_limit_param, "contract_max_n_parameter_samples": [100, 250, 500], "typed_dict": [True, False], "n_jobs": [n_jobs_model_val], "random_state": [random_state_val], }