Source code for TapNetClassifier_module

from typing import Any, Dict, List

from aeon.classification.deep_learning import TapNetClassifier
import keras
from ml_grid.pipeline.data import pipe
from ml_grid.util.param_space import ParamSpace


[docs] class TapNetClassifier_class: """A wrapper for the aeon TapNetClassifier time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the TapNetClassifier_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ verbose_param = ml_grid_object.verbose param_space = ParamSpace( ml_grid_object.local_param_dict.get("param_space_size") ) log_epoch = param_space.param_dict.get("log_epoch") random_state_val = ml_grid_object.global_params.random_state_val
[docs] self.algorithm_implementation: TapNetClassifier = TapNetClassifier()
[docs] self.method_name: str = "TapNetClassifier"
[docs] self.parameter_space: Dict[str, List[Any]] = { "filter_sizes": [(256, 256, 128), (128, 128, 64)], "kernel_size": [(8, 5, 3), (4, 3, 2)], "layers": [(500, 300), (400, 200)], "n_epochs": log_epoch, "batch_size": [16, 32], "dropout": [0.5, 0.3, 0.2], "dilation": [1, 2], "activation": ["sigmoid", "relu"], "loss": ["binary_crossentropy", "categorical_crossentropy"], "optimizer": [keras.optimizers.Adam(0.01), keras.optimizers.SGD(0.01)], "use_bias": [True, False], "use_rp": [True, False], "use_att": [True, False], "use_lstm": [True, False], "use_cnn": [True, False], "verbose": [verbose_param], "random_state": [random_state_val], }