Source code for TSFreshClassifier_module

from typing import Any, Dict, List

from aeon.classification.feature_based import TSFreshClassifier
from sklearn.ensemble import RandomForestClassifier

from ml_grid.pipeline.data import pipe


[docs] class TSFreshClassifier_class: """A wrapper for the aeon TSFreshClassifier time-series classifier. This class provides a consistent interface for the TSFreshClassifier, including defining a hyperparameter search space. Attributes: algorithm_implementation: An instance of the aeon TSFreshClassifier. method_name (str): The name of the classifier method. parameter_space (Dict[str, List[Any]]): The hyperparameter search space for the classifier. """
[docs] algorithm_implementation: TSFreshClassifier
[docs] method_name: str
[docs] parameter_space: Dict[str, List[Any]]
def __init__(self, ml_grid_object: pipe): """Initializes the TSFreshClassifier_class. Args: ml_grid_object (pipe): An instance of the main data pipeline object. """ verbose_param = ml_grid_object.verbose random_state_val = ml_grid_object.global_params.random_state_val n_jobs_model_val = ml_grid_object.global_params.n_jobs_model_val self.algorithm_implementation = TSFreshClassifier() self.method_name = "TSFreshClassifier" self.parameter_space = { "default_fc_parameters": ["minimal", "efficient", "comprehensive"], "relevant_feature_extractor": [True, False], "estimator": [None, RandomForestClassifier(n_estimators=200)], "verbose": [verbose_param], "n_jobs": [n_jobs_model_val], "chunksize": [None, 10, 100], "random_state": [random_state_val], }