Source code for KNeighborsTimeSeriesClassifier_module

from typing import Any, Dict, List

from aeon.classification.distance_based import KNeighborsTimeSeriesClassifier
from ml_grid.pipeline.data import pipe


[docs] class KNeighborsTimeSeriesClassifier_class: """A wrapper for the aeon KNeighborsTimeSeriesClassifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the KNeighborsTimeSeriesClassifier_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """
[docs] self.algorithm_implementation: KNeighborsTimeSeriesClassifier = ( KNeighborsTimeSeriesClassifier() )
[docs] self.method_name: str = "KNeighborsTimeSeriesClassifier"
[docs] self.parameter_space: Dict[str, List[Any]] = { "distance": [ "dtw", "euclidean", ], # , 'cityblock' 'ctw', 'sqeuclidean','sax' 'softdtw' "n_neighbors": [2, 3, 5], # [log_med_long] "n_jobs": [ml_grid_object.global_params.knn_n_jobs], }
# nb consider probability scoring on binary class eval: CalibratedClassifierCV