Source code for KNeighborsTimeSeriesClassifier_module

from typing import Any, Dict, List

from aeon.classification.distance_based import KNeighborsTimeSeriesClassifier

from ml_grid.pipeline.data import pipe


[docs] class KNeighborsTimeSeriesClassifier_class: """A wrapper for the aeon KNeighborsTimeSeriesClassifier. This class provides a consistent interface for the KNeighborsTimeSeriesClassifier, including defining a hyperparameter search space. Attributes: algorithm_implementation: An instance of the aeon KNeighborsTimeSeriesClassifier. method_name (str): The name of the classifier method. parameter_space (Dict[str, List[Any]]): The hyperparameter search space for the classifier. """
[docs] algorithm_implementation: KNeighborsTimeSeriesClassifier
[docs] method_name: str
[docs] parameter_space: Dict[str, List[Any]]
def __init__(self, ml_grid_object: pipe): """Initializes the KNeighborsTimeSeriesClassifier_class. Args: ml_grid_object (pipe): An instance of the main data pipeline object. """ self.algorithm_implementation = KNeighborsTimeSeriesClassifier() self.method_name = "KNeighborsTimeSeriesClassifier" self.parameter_space = { "distance": [ "dtw", "euclidean", ], # , 'cityblock' 'ctw', 'sqeuclidean','sax' 'softdtw' "n_neighbors": [2, 3, 5], # [log_med_long] "n_jobs": [ml_grid_object.global_params.knn_n_jobs], }
# nb consider probability scoring on binary class eval: CalibratedClassifierCV