Source code for IndividualInceptionClassifier_module

from typing import Any, Dict, List

from aeon.classification.deep_learning import (
    IndividualInceptionClassifier,
)

from ml_grid.pipeline.data import pipe
from ml_grid.util.param_space import ParamSpace


[docs] class IndividualInceptionClassifier_class: """A wrapper for the aeon IndividualInceptionClassifier time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the IndividualInceptionClassifier_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ random_state_val = ml_grid_object.global_params.random_state_val verbose_param = ml_grid_object.verbose param_space = ParamSpace( ml_grid_object.local_param_dict.get("param_space_size") ) log_epoch = param_space.param_dict.get("log_epoch")
[docs] self.algorithm_implementation: IndividualInceptionClassifier = ( IndividualInceptionClassifier() )
[docs] self.method_name: str = "IndividualInceptionClassifier"
[docs] self.parameter_space: Dict[str, List[Any]] = { "depth": [6, 8, 10], "nb_filters": [32, 64, 128], "nb_conv_per_layer": [3, 4, 5], "kernel_size": [30, 40, 50], "use_max_pooling": [True, False], "max_pool_size": [2, 3, 4], "strides": [1, 2], "dilation_rate": [1, 2], "padding": ["same", "valid"], "activation": ["relu", "elu"], "use_bias": [True, False], "use_residual": [True, False], "use_bottleneck": [True, False], "bottleneck_size": [16, 32, 64], "use_custom_filters": [True, False], "batch_size": [32, 64, 128], "use_mini_batch_size": [True, False], "n_epochs": [log_epoch], #'callbacks': [None, [ReduceOnPlateau(), ModelCheckpoint()]], #'file_path': ['./', '/path/to/save'], "save_best_model": [False], # Whether or not to save the best model "save_last_model": [False], # Whether or not to save the last model #'best_file_name': ['best_model', 'model_best'], #'last_file_name': ['last_model', 'model_last'], "random_state": [random_state_val], "verbose": [verbose_param], #'optimizer': [Adam(), RMSprop(), SGD()], "loss": ["categorical_crossentropy", "binary_crossentropy"], "metrics": ["accuracy"], }