Source code for FreshPRINCEClassifier_module

from typing import Any, Dict, List

from aeon.classification.feature_based._fresh_prince import FreshPRINCEClassifier
from ml_grid.pipeline.data import pipe


[docs] class FreshPRINCEClassifier_class: """A wrapper for the aeon FreshPRINCEClassifier time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the FreshPRINCEClassifier_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ random_state_val = ml_grid_object.global_params.random_state_val verbose_param = ml_grid_object.verbose n_jobs_model_val = ml_grid_object.global_params.n_jobs_model_val
[docs] self.algorithm_implementation: FreshPRINCEClassifier = FreshPRINCEClassifier()
[docs] self.method_name: str = "FreshPRINCEClassifier"
[docs] self.parameter_space: Dict[str, List[Any]] = { "default_fc_parameters": [ "minimal", "efficient", "comprehensive", ], # Set of TSFresh features to be extracted "n_estimators": [ 100, 200, 300, ], # Number of estimators for the RotationForestClassifier ensemble "save_transformed_data": [False], # Whether to save the transformed data "verbose": [ verbose_param ], # Level of output printed to the console (for information only) "n_jobs": [n_jobs_model_val], # Number of jobs for parallel processing "chunksize": [ None, 100, 200, ], # Number of series processed in each parallel TSFresh job "random_state": [random_state_val], # Seed for random, integer }