Source code for FCNClassifier_module

from typing import Any, Dict, List

from aeon.classification.deep_learning import FCNClassifier
import keras

from ml_grid.pipeline.data import pipe
from ml_grid.util.param_space import ParamSpace


[docs] class FCNClassifier_class: """A wrapper for the aeon FCNClassifier time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the FCNClassifier_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ random_state_val = ml_grid_object.global_params.random_state_val verbose_param = ml_grid_object.verbose param_space = ParamSpace( ml_grid_object.local_param_dict.get("param_space_size") ) log_epoch = param_space.param_dict.get("log_epoch")
[docs] self.algorithm_implementation: FCNClassifier = FCNClassifier()
[docs] self.method_name: str = "FCNClassifier"
[docs] self.parameter_space: Dict[str, List[Any]] = { "n_layers": [3], "n_filters": [128, 256, 128], "kernel_size": [8, 5, 3], "dilation_rate": [1], "strides": [1], "padding": ["same"], "activation": ["relu"], "use_bias": [True], "n_epochs": [log_epoch], "batch_size": [16], "use_mini_batch_size": [True], "random_state": [random_state_val], "verbose": [verbose_param], "loss": ["categorical_crossentropy"], "metrics": [None], "optimizer": [keras.optimizers.Adam(0.01), keras.optimizers.SGD(0.01)], #'n_jobs':[1] #not a param #'file_path': ['./'], #'save_best_model': [False], #'save_last_model': [False], #'best_file_name': ['best_model'], #'last_file_name': ['last_model'], #'callbacks': [None] }