Source code for ContractableBOSSClassifier_module

from typing import Any, Dict, List

from aeon.classification.dictionary_based import ContractableBOSS
from ml_grid.pipeline.data import pipe


[docs] class ContractableBOSS_class: """A wrapper for the aeon ContractableBOSS time-series classifier.""" def __init__(self, ml_grid_object: pipe): """Initializes the ContractableBOSS_class. Args: ml_grid_object (pipe): The main data pipeline object, which contains data and global parameters. """ time_limit_param = ml_grid_object.global_params.time_limit_param n_jobs_model_val = ml_grid_object.global_params.n_jobs_model_val random_state_val = ml_grid_object.global_params.random_state_val
[docs] self.algorithm_implementation: ContractableBOSS = ContractableBOSS()
[docs] self.method_name: str = "ContractableBOSS"
[docs] self.parameter_space: Dict[str, List[Any]] = { "n_parameter_samples": [100, 250, 500], # Number of parameter combos to try "max_ensemble_size": [ 30, 50, 100, ], # Maximum number of classifiers to retain "max_win_len_prop": [ 0.8, 1.0, ], # Maximum window length as a proportion of series length "min_window": [5, 10, 15], # Minimum window size "time_limit_in_minutes": time_limit_param, # Time contract to limit build time in minutes "contract_max_n_parameter_samples": [ 1000, 2000, ], # Max number of parameter combos when time_limit_in_minutes is set "save_train_predictions": [ True, False, ], # Save ensemble member train predictions in fit for LOOCV "n_jobs": [ n_jobs_model_val ], # Number of jobs to run in parallel for fit and predict "feature_selection": [ "chi2", "none", "random", ], # Sets the feature selection strategy to be used "random_state": [random_state_val], # Seed for random integer }