Source code for Catch22Classifer_module

from typing import Any, Dict, List

from aeon.classification.feature_based import Catch22Classifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier

from ml_grid.pipeline.data import pipe


[docs] class Catch22Classifier_class: """A wrapper for the aeon Catch22Classifier time-series classifier. This class provides a consistent interface for the Catch22Classifier, including defining a hyperparameter search space. Attributes: algorithm_implementation: An instance of the aeon Catch22Classifier. method_name (str): The name of the classifier method. parameter_space (Dict[str, List[Any]]): The hyperparameter search space for the classifier. """
[docs] algorithm_implementation: Catch22Classifier
[docs] method_name: str
[docs] parameter_space: Dict[str, List[Any]]
def __init__(self, ml_grid_object: pipe): """Initializes the Catch22Classifier_class. Args: ml_grid_object (pipe): An instance of the main data pipeline object. """ verbose_param = ml_grid_object.verbose random_state_val = ml_grid_object.global_params.random_state_val n_jobs_model_val = ml_grid_object.global_params.n_jobs_model_val self.algorithm_implementation: Catch22Classifier = Catch22Classifier() self.method_name: str = "Catch22Classifier" self.parameter_space: Dict[str, List[Any]] self.parameter_space = { "features": ["all", ["DN_HistogramMode_5", "DN_HistogramMode_10"]], "catch24": [True, False], "outlier_norm": [True, False], "replace_nans": [True, False], "use_pycatch22": [True, False], "estimator": [ RandomForestClassifier(n_estimators=200), DecisionTreeClassifier(), ], "random_state": [random_state_val], "n_jobs": [n_jobs_model_val], }